cGMP kinase I regulates glucagon release
نویسندگان
چکیده
Blood glucose levels are tightly controlled by the two peptide hormones glucagon and insulin. At hyperglycaemia, B-cells in the islets of Langerhans secrete insulin, whereas islet A-cells release glucagon at hypoglycaemia to stimulate e.g. glucose production in the liver. Previously, an important role for nitric oxide (NO) in the development of type-1 diabetes mellitus (insulin dependent diabetes mellitus) was reported [1]. The mechanisms are unknown whereby NO modulates islet (mal-)function. We hypothesized that NO signals via the cGMP/cGMP kinase I (cGKI) pathway to modulate the endocrine control of blood glucose levels. Glucose homeostasis was studied in the conventional cGKI knockouts (KOs) and in cGKI rescue mice (RM) [2] in comparison to ageand littermate controls. The cGKI mutant mice were significantly hyperglycemic at fasting. Further in vivo analysis of RM revealed no changes of the serum insulin levels, but the serum glucagon was significantly increased in comparison to controls. We anticipated that endogenous cGKI could directly affect the release of glucagon, because immunofluorescence of Langerhans islets demonstrated that the cGKI protein localized mainly to the glucagon-secreting A-cells in control mice, but was absent from B-cells and not detectable in the islets of gene-targeted cGKI mice. The essential beta subunit of the soluble guanylyl cyclase (sGCβ1) [3] and the cGMP-degrading phosphodiesterase5 (PDE-5), both important cGMP signaling components in many cells, were also detectable in A-cells of all genotypes analyzed. To identify a specific function for the pathway in A-cells, we measured the hormone output of isolated islets at physiologically low (6 mM) and high (20 mM) concentrations of glucose. Interestingly, the glucoseinduced suppression of glucagon release was abolished in islets that lacked cGKI, whereas the total glucagon content of the islets was not changed.
منابع مشابه
Cyclic GMP Kinase I Modulates Glucagon Release From Pancreatic α-Cells
OBJECTIVE The physiologic significance of the nitric oxide (NO)/cGMP signaling pathway in islets is unclear. We hypothesized that cGMP-dependent protein kinase type I (cGKI) is directly involved in the secretion of islet hormones and glucose homeostasis. RESEARCH DESIGN AND METHODS Gene-targeted mice that lack cGKI in islets (conventional cGKI mutants and cGKIα and Iβ rescue mice [α/βRM] that...
متن کاملNitric oxide regulates cyclic GMP-dependent protein kinase phosphorylation in rat brain.
Nitric oxide (NO) acts via soluble guanylyl cyclase to increase cyclic GMP (cGMP), which can regulate various targets including protein kinases. Western blotting showed that type II cGMP-dependent protein kinase (cGK II) is widely expressed in various brain regions, especially in the thalamus. In thalamic extracts, the phosphorylation of several proteins, including cGK II, was increased by exog...
متن کاملRegulation of RGS2 and second messenger signaling in vascular smooth muscle cells by cGMP-dependent protein kinase.
RGS2, a GTPase-activating protein (GAP) for G(q)alpha, regulates vascular relaxation and blood pressure. RGS2 can be phosphorylated by type Ialpha cGMP-dependent protein kinase (cGKIalpha), increasing its GAP activity. To understand how RGS2 and cGKIalpha regulate vascular smooth muscle signaling and function, we identified signaling pathways that are controlled by cGMP in an RGS2-dependent man...
متن کاملGlucagon regulates ACC activity in adipocytes through the CAMKKβ/AMPK pathway.
Glucagon is important for regulating lipid metabolism in part through its inhibition of fatty acid synthesis in adipocytes. Acetyl-CoA carboxylase 1 (ACC1) is the rate-limiting enzyme for fatty acid synthesis. Glucagon has been proposed to activate cAMP-dependent protein kinase A (PKA), which phosphorylates ACC1 to attenuate the lipogenic activity of ACC1. Because AMP-activated protein kinase (...
متن کاملGlucagon-like peptide 1-related peptides increase nitric oxide effects to reduce platelet activation.
Glucagon-like peptide 1 (GLP-1) is object of intensive investigation for not only its metabolic effects but also the protective vascular actions. Since platelets exert a primary role in the pathogenesis of atherosclerosis, inflammation and vascular complications, we investigated whether GLP-1 directly influences platelet reactivity. For this purpose, in platelets from 72 healthy volunteers we e...
متن کامل